

Realization of a monochromatic electron source from 2D-MOT

Yoann Bruneau

With Guyve Khalili, Neven Santic, Daniel Comparat Laboratoire Aimé Cotton

> ColdBeams 1^{er} Octobre 2012

This work is supported by FP7-PEOPLE-2009-IAPP and ERC

Point source / colimated source

Needs: Mono-Energy ($\Delta E < 0.1 \text{ eV}$) spectroscopy-chemistry-focus

g

Trapping cold atoms

Density
$$10^{11} \text{ at/cm}^3$$
 T = 100 μ K
V = 0.1 m/s

Cold atoms sources

3D-MOT

See E. Vredenbregt's talk (on Monday 1st October at 9:10) Oven

Transversaly cooled atoms beam

Continuous beam

2D-MOT

See L. Kime's talk (on Monday 1st October at 14:35)

Max current 1 nA

 $\Delta E = 1 \sim 20 \text{ meV}$

Outline

- Presentation of the 2D-MOT
 - Inside the 2D-MOT and creation of the atomic beam
 - Study of the flux by fluorescence
 - Simulations on the electron trajectories with General Particule Tracer code (GPT)
- Future Improvements of the flux in the ionisation area
 - by compression
 - by changing the power of the pushing beam

The standard 2D MOT

The standard 2D MOT

Caracterisation of the beam

-> Give the number of atoms in the lighting volume

Speed of atoms

GPT simulations

Current: 10 pA

GPT simulations

Conclusion on these first results

- Current source: 5 μ A on (1 mm²) (1 A/m²)
- New source: 10 pA on $(40 \text{ nm})^2 (10^5 \text{ A/m}^2)$

Control of chemical breaking

Institut des sciences molécullaires d'Orsay See A. Lafosse's talk (on Wednesday 3 October at 9:40)

Compression

 $n_{lim} = 10^{11} \text{ atoms.} m^{-3}$ $flux_{lim} = 10^{10} atoms/s (0.1 \text{ mm})^2$

Compression

Changing the power of the pushing beam

Changing the power of the pushing beam

