"Making the Molecular Movie":

<Now with REGAE Musik>

R. J. Dwayne Miller

Max Planck Research Group for Atomically Resolved Dynamics Department of Physics, University of Hamburg, The Centre for Free Electron Laser Science/DESY and The Departments of Chemistry and Physics University of Toronto

U of Toronto Group: Past

Ralph Ernstorfer Maher Harb Christoph Hebeisen Tibault Dartilongue Mariko Yamaguchi Sergei Kruglik Robert Jordan Jason Dwyer Brad Siwick

Present:U of T/U of H CFEL/DESY

German Sciaini Hubert Jean-Ruel Raymond Gao Cheng Lu Gustavo Moriena Ryan Cooney Dongfang Zhang Julian Hirscht Masaki Hada Andrew Marx Nelson Liu

Acknowledgments

Kyoto-University: Jiro Matsuo

Canadian Light Source: Mark de Jong

U of Wisconsin-Madison Max Lagally Mark Eriksson Weina Peng

Universität Konstanz: Jure Demsar Max Eichberger Hanjo Schäfer and EPFL: Helmuth Berger

Canada Foundation for Innovation

Fondation canadienne pour l'innovation

Tokyo Institute of Techn Shin-ya Koshihara Ken Onda **Kyoto University** Hideki Yamochi

Universität Duisburg-Essen: Michael Horn-von Hoegen Frank-J. Meyer zu Heringdorf Thomas Payer

DESY/U of Hamburg Collaborators:

Klaus Floettmann Hossein Delsim-Hashemi Kurt Mueller Shyma Bayesteh Jurgen Rossbach

U of Edinburgh Carole Morrison Michal Kochman

The First Movie Documentary – Nanook of the North

Before

After

Mother Nature and the Big Bang of Chemistry

The "Molecular Dance": Functionally Important Protein Motions

What is the mechanism of correlated atomic displacements?Structure - Function Correlation \Rightarrow resolve atomic motions on timescalesfaster than the onset of diffusive motions.....observe force correlations

4th Generation Light Sources

http://www-ssrl.slac.stanford.edu/lcls/downloads/lcls_brochure_screen.pdf

<10⁻¹⁴ second flashes of coherent x-ray pulses to catch molecular structures on the fly.....approx 200 fs time resolution wrt structural dynamics

SLAC, DESY, Spring-8, Swiss-FEL

⇒ Major International Facilities
 ⇒ Alternative sources needed

Motivation and Challenges for Electron Sources

- Time-resolved electron diffraction harbours great promise for resolving the fastest chemical/condensed phase processes with atomic level structural detail (i.e. make Molecular Movies) \Rightarrow *generally irreversible processes*.
- How to get sufficient current density (100 mA/mm² or more) to the sample for near single shot structure determinations --- must avoid space-charge effects (Coulomb repulsion) that act to broaden the electron pulse as it propagates.
- *How to solve t = 0 problem for synchronizing "film"*
- How to characterize femtosecond electron pulses --- major problem as the pulse profile rapidly evolves in time/propagation.....time resolution required is (was) beyond all current technologies.

Nonrelativist Electron Propagation Dynamics

Exact solution to N-electron equations of motion using a Barnes-Hut tree algorithm:

- Electrons redistribute inside the packet to produce a linear velocity chirp ⇒ can be compressed
- Relative Axial Velocity (µm/ns) 1.0 -0.5 -1.0 T = 0 nsT = 0.2 nsRelative Axial Velocity (µm/ns) 00 05 0 00 00 00 00 00 00 00 00 100 50 -50 -1.5 20 -20 -10 10 -30 -20 Ó 10 20 30 300-Z-Position in Pulse (µm) Z-Position in Pulse (um) 300 Relative Axial Velocity (µm/ns) Relative Axial Velocity (µm/ns) 200 T = 1 nsT = 2 ns200 100 100 -100 -100 -200 -200 -300 -300 -200 -150 -100 -50 Ó 50 100 150 200 -600 -400 -200 200 400 600 Z-Position in Pulse (µm) Z-Position in Pulse (µm)
- Spatial-temporal correlation of electrons is conserved with enough electrons for single shot structure determinations
- Axial velocity (Vz) vs. axial position (Z) for all electrons in the pulse at four times (T) during its propagation (N = 10 000, $\tau o = 150$ fs, r(0) = 75 μ m, 1.5 mrad initial beam divergence).
- *B.J. Siwick et al., J. Appl. Phys., 92, 1643 (2002)

Progression of Ultrafast Electron Diffraction

Major Milestones re: Resolving Structural Changes

3rd Generation Electron Gun: Making the "Molecular Movie"... First Frames

Strongly Driven Phase Transitions in Aluminum

Siwick, Dwyer, Jordan, and RJDM, Science 2003

Conventional lasers with long pulses such as CO₂, Er:YAG, Nd:YAG cause heating and can burn the tissue.

First atomically resolved movie revealed means to control of nucleation to nm scale/elimination of cavitation induced shock waves

 \Rightarrow Long held promise of the laser for surgery finally realized

Single cell wound size achieved \Rightarrow No scar tissue formation (RJDM et al, PLOS, 2010)

Making the "Molecular Movie" ... First Frames

Time-Dependent Reduced Density Function

B. J. Siwick, J. R. Dwyer, R. E. Jordan, R. J. D. Miller, "An Atomic-Level View of Melting Using Femtosecond Electron Diffraction," *Science* 2003 November 21; 302: 1382-1385.

 \Rightarrow Resolved atom pair correlations on timescales faster than diffusion

All Optical-Electron Pulse Measurement: Determination of Camera Shutter Speed

Pulse energy of approx. 1-10 mj at 800 nm and 10 μ m beam \Rightarrow less than 100 fs resolution: Siwick et al. *Opt. Lett.* 30, 1057 (2005)....ALLS project

Sampling the Electron Pulse (I)

- We obtain time traces by scanning the delay between the electron pulse and the laser "scattering pulse".
- Scattering reduces the number of electrons in the pulse around the laser focus resulting in a hole in the electron beam.

Full characterization of e⁻ pulses

Streak cameras don't have an adequate temporal response ~ 2 ps_100µm

Pulse energy = 15 mJ!

Stroboscopic images courtesy of Andrew Davidhazy RIT, <u>http://people.rit.edu/andpph/</u>

Hebeisen et al. Opt. Lett. 31, 3517 (2006)

Femtosecond Electron Diffraction: Apparatus Schematic

Solid state dynamics under strongly-driven conditions

Possible effects of (intense) electronic excitation on the interatomic potential:

Superlattices in 2-D systems

Charge density waves (CDW), definition:

A possible ground state of a metal in which the conduction-electron charge density is sinusoidally modulated in space.

http://www.physnet.uni-hamburg.de/iap/group_g/F_Praktikum/Rastertunnelmikroskopie/

Direct Observation of the Structural Order Parameter

Eicherberger, Sciaini et al, Nature 2010

5th Generation: 100KeV Electron RF Gun

First Results with RF Pulse Compression — 5x10⁵ electrons with less than 100 fs pulse durationswith jitter compensation

Fs Molecular Photocrystallography

Diarylethene: FED study of the ring-closing reaction

Promising material for photonic devices

- → Thermal irreversibility
- → Fatigue resistance
- → Photochromism in crystalline phase

Irie et al., Bull. Chem. Soc. Jpn., 77, 195-210 (2004).

Irie et al., Chem. Rev. 100, 1685-1716 (2000).

Photon Cycling and Peak Power Limitations in Femtosecond Crystallographaphy

Maximum Peak Power ≤ 30 GW/cm²

Short Time Dynamics

Fs Molecular Photocrystallography

Diarylethene: FED study of the ring-closing reaction

Static electron diffraction

In situ cyclization and cycloreversion

Integrated intensity of the peak (7-1-6) normalized to its intensity in the original crystal

Real time cycloreversion movie

 \Rightarrow Strongly damped mode — 1/2 period matches dynamics \Rightarrow All higher frequency modes coupled through C...C motion to this primary rxn mode.

Fs Molecular Photocrystallography:

Charge-Transfer in Organic Salt

Fig. 1. (A) Schematic views of the lattice and electronic structural changes accompanying the M-I phase transition in $(EDO-TTF)_2PF_6$. A side view of an EDO-TTF molecule is shown. The unit cell includes two and four EDO-TTF molecules in M and I phases, respectively (*15*). In the I phase, holes are localized on EDO-TTF molecules with a flat structure due to CO, and quasi-neutral molecules show a bent structure. In the M phase, charges (holes) are delocalized and PF_6 (acceptor) molecules exhibit disorder (*15–18*). (B) Schematics for free-energy change accompanying M-I transition and the structure of the EDO-TTF molecule.

Static Diffraction

Difference (rm-200K)

Diffraction out to less than .4Å⁻¹!

Comparison of "difference ediff pattern" HT-LT vs. optically induced

note: qualitatively similar for the majority of peaks

FED results – fs ultrafast dynamics, Observation of Transient State

Typical time-resolved change in diffraction intensity – early dynamics – shared (qualitatively) by several peaks (~50%)

note: this ps rise/drop varies from 20 to -35% for different peaks

FED results (3) – ps/ns dynamics; again evidence for transient state

Typical time-resolved change in diffraction intensity – long dvnamics – shared (qualitatively) by several peaks (~50%):

Movies (preview...)

Transient Structure Reconstruction

M. Gao et al., Submitted

Relativistic Electron Gun for Atomic Exploration (REGAE): Citius, Altius, Fortius

REGAE defines new limits in Atom Gazing

Higher bunch density/Fortius

Micro-scale samples/Altius

Higher Time Resolution/Citius

Hastings, J.B. et al. Appl. Phys. Lett. 89, 184109 (2006)
Musumeci, P. et al. Appl. Phys. Lett. 97, 063502 (2010).
Yang JF, Kan K, Kondoh T, Yoshida, Y., Tanimura, K., Urakawa, J., Nuclear Instr. & Methods Phys.
Res. A, Accelerators Spectrometers Dectors and Assoc. Equip. 637, S24-S29, 2011

Layout of REGAE

Simulation of Beam Properties: 10⁶ – 10⁷ e Bunch Charge

 \Rightarrow equivalent diffracted particle flux to greater than 10¹¹ 10+ KeV x-ray photons....4th Generation Light Sources

 10^7 electrons/10 fs \Rightarrow single shot movies to capture even the fastest atomic motions....proteins, solution phase rxn dynamics, real space imaging of cells....

Summary

The "Camera for the Molecular Movie" is now inhand – electrons provide first light

⇒ fundamental correlations of bonding and electron distributions/electron-lattice coupling

"Molecular Movies" Filmed on Location at U of Toronto/CFEL Hamburg with electron "back lighting" — *single shot capabilities* (*collaborations welcome*)and now SLAC, SPRING-8, soon DESY E-XFEL, Swiss-FEL with *hard* x-rays.

REGAE MUSIK ⇒Sending Probes into Transition States (Atomic Terra Incognita) to beam back pictures of atoms and turn notions into indelibe facts of Nature

Hamburg Center for Ultrafast Imaging

⇒9 Faculty Positions (6 W1 Positions and 3 W3 Chaired Positions)

Ph.D. and PDF Fellowships