Ultrafast Molecular Imaging With Laser Driven Electron Diffraction

COLDBEAMS Workshop – Nîmes, France October 3rd, 2012

Needed: sub-Angstrom and femtosecond spatio-temporal resolutions

Needed: sub-Angstrom and femtosecond spatio-temporal resolutions

Outline: - brief introduction to conventional gas phase electron diffraction

- independent atom model
- laser-induced electron diffraction
 - atomic results
 - molecular results
 - first direct observation of molecular relaxation
- outlook

Traditional imaging methods

Alternative path (NRC, BNL, Imperial College, Texas A&M, MPI, etc.)

Laser-Induced Electron Diffraction (LIED) Based on rescattered electrons generated by intense fs pulses

 spatial resolution
 Understanding and decoupling the effect of the laser field

Laser-Driven Electron Diffraction (LIED)

• relevant quantity: - momentum transfer $q=2p_rsin(\theta/2)$

momentum transfer q determines spatial resolution
q > 5 Å⁻¹ are needed even for simple molecules

Laser-Induced Electron Diffraction (LIED)

- long wavelength: rescattering electron energy > 100 eV (hard collisions)
- **backscattering:** spatial resolution satisfied if $\theta \rightarrow 180^{\circ}$
- invoke same analysis as conventional e-beam diffraction
- Challenge: extracting the DCS from the recorded angular distributions

Laser-Induced Electron Diffraction (LIED)

- accurate positions for diffraction minima and maxima
- two orders of dynamic range
- LIED DCS identical with field-free CED result proves the validity of QRS
- ionic (LIED) and neutral (CED) DCSs are identical short range interaction justify IAM

Laser-Induced Electron Diffraction (LIED) – Atomic Response

Suggests temporal resolutions below 100 as

Laser-Induced Electron Diffraction (LIED) – Molecular Response

- DCS in very good agreement with conventional method

- DCS in very good agreement with conventional method

Laser-Induced Electron Diffraction (LIED) – Molecular Response

- Why is the ionic O-O distance shorter than the neutral O-O?

Laser-Induced Electron Diffraction (LIED) – Molecular Response

- Pump-probe: ionization = pump, rescattering = probe

By changing the driving field wavelength we control the recollision (imaging) time!

- Alternative methods: - bichromatic fields - ellipticity control

By changing the driving field wavelength we control the recollision (imaging) time!

- Alternative methods: bichromatic fields - ellipticity control
- LIED directly sees the type of molecular orbital

Laser-Induced Electron Diffraction (LIED) – More Complex Molecules

Q: Why is the contrast better in butane?

A: Tunneling ionization strongly favors certain molecular orientations.

We can record DCS for aligned samples for free!

Broadband attosecond electron wave packet studies

Broadband attosecond electron wave packet studies

Molecular tunneling studies

Broadband attosecond electron wave packet studies

Molecular tunneling studies

Laser-Induced Electron Diffraction (LIED) – Conclusions

- We can achieve spatio-temporal resolutions good enough to follow ultrafast molecular transformations
- Single atom/molecule method
- Applicable to complex molecules

Laser-Induced Electron Diffraction (LIED) – What we need next

- Faster acquisition times for true pump-probe experiments

Velocity map imaging detector

- Long wavelength (3-20 μ m), few cycle, high repetition rate drivers

New optical parametric amplifiers (KTA, AGS – based)

Thank you!

<u>Cosmin Blaga</u>, Junliang Xu, Anthony DiChiara, Kaikai Zhang, Urszula Szafruga, **Pierre Agostini, Louis F. DiMauro**

Terry A. Miller

Chii-Dong Lin

United States Department of Energy