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The present status of a research where we apply a simple
photoionization scheme to an atom beam produced by using
laser cooling techniques (cold and slow)
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Basics of the approach

Excitation laser
— I_, Cs atom beam
B
| | W =—py
3
. pe— lon detector
Pyramidal . ©>- u lonization laser
MOT . .
Collimation

(2D optical molasses)

. S 1+0.6 eV
. ] i 405 nm
Continuous Cs atom beam: + Two-photon, two-
0 produced out of a pyramidal-MOT color (one 6 2p
o further collimated by a 2D transverse ' resonant) 32 —
optical molasses . photoionization 852 nm
. scheme 6 2S,,, —

0 Method originally conceived for atom
lithography

0 The beam is cold and slow
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A few “hystorical” remarks

Atom lithoaranhv
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Atomic beam

" © |-dimensional

o & -dimensional

. standing wave

rd

substrate

Strong collimation of the atom beam was a pre-requisite for atom lithograpaphy (cold
beam)

Moreover, we used a slow beam to increase the interaction time
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A few “hystorical” remarks

Resist-assisted Direct deposition

(trenches on gold) (many different morphologies found)

With the
standing wave

[C. O’'Dwyer, et al., Nanotechnology 16 1536 (2005)]

Without the

_ _ _standing wave
[F. Tantussi, et al., Mat. Sci. Eng. C 27 1418 (2008); F.Tantussi

et al., pag.65 in Highlights on Synchrotron Radiation and 100nm
Nanostructures (World Sci. Publ., 2009)]
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A few “hystorical” remarks

Strong collimation of the atom beam was a pre-requisite for atom lithograpaphy (cold
beam)

Moreover, we used a slow beam to increase the interaction time

[At the expenses of a limited particle density (limited brilliance)
- proof of principle rather than a system able to replace conventional sources ]

Joined with all predicted appealing features of ion beams coming from laser manipulated
atoms such as:

» Small divergence and large area (negligible space charge effects);
» Relatively wide range of species ;

» lonization and accelaration ideally decoupled
> ...
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Basics of the approach

compensation anti-Helmoltz

Pyramid: _ coil coil
an arrangement of prisms and mirrors

assembled in the shape a hollow

reflecting pyramid (40 mm side) with a 2
1x2 mm? vertex hole o, 'S
_____ £,
£ —p S E
® <« T2
= O; c o
(& o) ]
ot £ =
> 2
e
Typ. values: y =

n~10%cm-3
div. ~ 40 mrad

Cs background vapor 2 AX
(from dispensers)

v By shining a single, large dia (35 mm) laser beam onto the pyramid, the optical
configuration of a MOT is achieved

v" Unbalance in radiation pressure along the pyramid axis pushes Cs atoms out of the
pyramid hole

Typical operating parameters:

e Trapping radiation: F =4 &> F’ =5 of the D2 Cs transition (852 nm), red
detuned by ~2T'; | ~ 5 mW/cm?

¢ Repumping radiation: F = 3 > F’' = 4 of the D2 Cs transition (852 nm), [A. Camposeo, et al., Opt. Commun. 200 231 (2001);
resonant; | ~ 0.2 mW/cm?2 A. Camposeo Mat. Sci. Eng. C 23 1087 (2003)]

e Quadrupole magnetic field gradient ~ 5-10 G/cm
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Beam collimation (cold beam)

2D transverse optical molasses

ot /o* collimation laser beams

Geometrical divergence of the
beam derived from fluorescence
imaging at different distances from
the pyramid hole

Fluorescence imaging ~40 cm downward the pyrami
rom ve2™ Prog, pea™ Prog,
a e Iase,- atom e /ase'
P - 1600 .>
uncollimated 1400 = collimated |
12002
1000
800 §
X2 600 8
400 —
b 200 *
Uty S 259 2 4 6 8 1 g, 31 4 4 6 8 10
" ) Distance [Mm] T 2 pigtance [mm]

N

Typical collimation laser parameters:
e F=4 > F =5detuned by ~4 T’; | ~ 10 mW/cm?
« Cigar-shaped beams (15x1 mm?) to improve interaction time

Typ. residual divergence ~ 7 mrad (full angle)

Tirasy~ 130 UK = cold atom beam '

d
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Velocity of the slow beam

Deflecting

Beam
N —
! Photodiode

N
/‘ Undeflected
Atomic Beam

Atomic Beam

Deflected

Fluorescence signal [V]

v 6 8 10 12 14
[A. Camposeo Mat. Sci. Eng. C 23 1087 (2003)] Longitudinal velocity [m/s]
Absorption spectroscopy ;
< 1.000 Typ. longitudinal velocity ~ 12 m/s (Av ~ 1.0 m/s)
=) .
c 0.999 -
) -
(7)) .
© 0.998 —
g .
5 VSl |:> Typ. atom flux ~ 10° at/s
= —lllllllllllllllllll (Ona~10mm2fwhmarea)

-50 0 50
Detuning [MHz]
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Photoionization |

Cs energy level scheme

= F=4>F=5 &
4x10 — 4
continuum 1+0.6 Y - f
'y M 3
I by
Ior:lzatlon A 405 nm 2, 3
aser --- Hyperfine levels - ] 4
- 6 P X — = | = 14 = =
3/2 T LR— I [=] — - —
Excitation 4 .{_ - =4 L o 4 F4>F=3
- 1 F =3 : c =
laser 852 nm ! . 8 0-
— v 1 I
~6°S,, " = F=4 | 600 -400 -200 O 200
Excitation laser detuning [MHz]
ItO counter
Experimental Electron multiplier Thorn EMI 226EM
configuration (superposed Charge CuBe cathode +16 dynodes — typ. gain 107
excitation + ionization lasers) detector 3KV
'3 cm
Low power (20 mW) Excitation
ionization laser and weak laser

focusing - no saturation
of the ionization step

Beam

lonization splitter Plate
laser
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Photoionization and ionization laser power

lon yield vs ionization power

Excitation power

1l O P.=9mwW, ® P_,.=8mW ﬁ
Il & Pa=omW, & P, .=4mW
4
1 511 D | ¥ Page—3mW, w Pg.~2mW % Typigal parameters:
'ﬁ' 1l 4 Pem=1 MW, Pam=ﬂ-25 oy . {/(\J/ygre:ztlon intensity 1~200
L 7 * lonization cross section
o — W % op=1.4x1017 cm?
E 1 U = (literature data)
E B % i + Charge collection and
o N "] detection efficiency 1-
= ] E ; i 10% (estimated)
= -
8 0.5 i
O . ? ¥ .|
=] s 1 ¥ ¥ 1 )
- - ] Typ. ion current < 0.1 pA
z 4 yp. Y
0.0 LI LA L N ancil/ in~raaca s
\uan easiy Inci ease Jy
2 4 6 8 10 12 using more powerful
lonization power [mW] ionization laser!)
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Photoionization and excitation laser power

8+ ¢ *
)= *
y *
Lo * o Sublinear behavior and saturation plateaus observed
F=4>F=5 when increasing the power of the excitation laser
T *
- o Remarkable differences seen for the three explored
=l (and accessible) hyperfine transitions
o
] ; (] o In general, data do not agree with simple predictions
¥ i t not accounting for the actual multi-level character of the
-g : F=4 S F'=4 Cs atoms
5 2x102‘; ;
) {ﬁ* E I
) gl Peculiar behavior due to the slow
] 3 (] character of the atom beam and the
_ consequent relatively long interaction
10° ! F=4 > F=3 time in the excitation step (~ 100 us)

T IIIIIII| T IIIIIII| T IIIIIII| T IIIIIII|
0.01 0.1 1 10
Excitation power [mW]

v
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Optical pumping

o in the actual experimental Corml lons (large interaction time, negligibie Doppler effects,
small photoionization rate), the ion yield is linearly proportional to the population of
excited hyperfine state

5 -4 -3 22 .1 ©O 1 I 3 4 5
o The multi-level nature of Cs atoms makes 3334 35 36 37 M 30 40 41 &£ 4
optical pumping effects relevant in ruling T R EEomwowan T| 261 e
population of selected Zeeman sublevels thin 718 19 W 31 3 33 | 200 Mite
Feri = = === ==
Fee = 22220220 E
bt 12345581 ¥

Ratio between
F=4->F'=4 and F=4>F'=3

( )
T |= = Sim. (no ZP)

—————
=~

10°  10*  10° 10 10" 10°
Excitation power [mW]

Ratio between
F=4->F'=5 and F=4>F'=4

Excitation power [mW]

R
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Photoionization Il

Excitation
laser

Experimental configuration
(orthogonal excitation and

\OTNOY Charge
ionization lasers)

detector

-3kV to counter

Time sequence for the

gated counting meas lonization laser

(pulsed) Interaction volume
Trigger
lonization laser pulse 93 ~1 mm?3

Investigated

[F' | interval
h “Time- / :

< Of- > (x107) (Gate after 0 s

0- Flont Main goal:
; to investigate the dynamics of ion
(107 |Gate after 50 s packets produced by ps ionization laser
pulses through a sort of Time-Of-Flight

0 10 20 30 40 50

Time [us]
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Collection electric field

Simulated electric field Simulated ion trajectories dx_aq. (x 2)
(Poisson-Superfish code) dt ’
dz q

Z [m] t
0.16 0.18 0.20 0.22 0.24 026 0.28 0.30 "U.3¢  U.o4

G
"1 20 20 60
/ I x1 O3 Vim

=
B
1 [
=
i
<
20

X [m]
0

20x10°

First dynode

Detector holder Mesh 1 Mesh 2
surface

o Compromise needed between the minimum possible perturbation to the ion dynamics
and sensitivity (gate duration 1 ps)

o Typically, the electric field gradient along the longitudinal direction was simulated to be
around 40 V/cm (not negligible!)
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lon arrival time onto the detector

o AOM used to produce ionization laser pulses (with a large dia crystal, that explains the
slow rise time of the pulse)

o Time-Of-Flight is clearly visible

o The temporal shape of the ion count hystogram is deformed and slightly broadened

Experimental data

= 257 lonization laser lon counts - 60
£ 20_: pulse — tor=23.8 us — — 50 ©
r - 3
g ] n 9

. C 40
S ] 30 8
"ﬁ 1.0 5 - '2'
‘e ] :—20 E
2 05 C

. [ ] 11 10
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0 2 4 6 8 28 30 32 34

Time [pus]
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Simulation of ion arrival time

v' Very good agreement with the experiment

Simulated ion flight

5x10°
=L ,
< ] tror.....23.93 £ 0.02 us| Hill§ 10n arrival time
= 3 distribution {lH  qistribution
S - (initial)
o) ] I‘ <E > =26.5%1.8¢eV
(7 2
c ] ‘ AE, = 2.4 eV
) 1 _: |
O__ ||||||||||||||||// IIII ||||||||||||||
4 0 4 R 77 24 26 28
Time [[is]
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Conclusions and future directions

v" lons have been produced from the cold and slow atom beam (first objective of our
research)

v Spectroscopy of the atom beam realized and ion beam dynamics investigation started
(to be completed with, e.g., divergence measurements)

v" Work is in progress to achieve further improvements:
» design and implement a more suited interaction region (smaller interaction volume and
field gradients);
* increase the ion yield (improve ionization laser power, use a wavelength closer to
ionization threshold or conceive other photoionization schemes);
« add a compression stage to the atom beam in order to improve its density

v In the mid-term, we will introduce and analyze laser manipulation configurations for on-
demand delivery of ion packets (already tried with pushing laser beams, yet with not
satisfactory results)

v In a longer term, we plan ion beam/surface interaction experiments and in-situ UHV-
STM investigations
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