

# MOTIS: A Magneto-Optical Trap-Based Cold Ion Source

#### Jabez McClelland,<sup>1</sup> Brenton Knuffman,<sup>1,2</sup> and Adam Steele<sup>1,2</sup>

<sup>1</sup>Center for Nanoscale Science and Technology, NIST, Gaithersburg, MD 20814 USA <sup>2</sup>Maryland Nanocenter, University of Maryland, College Park, MD 20742 USA

COLDBEAMS, Nimes, France, October 1, 2012





NGT National Institute of Standards and Technology • U.S. Department of Commerce

### How can FIBs be improved?

#### Focused ion beams: an indispensable tool for:

nanofabrication, milling, imaging, surface analysis, etc

#### **Fundamental FIB characteristics:**



More makes everything more efficient – picoamps sufficient for many applications



Smaller allows more precision – <10 nm good, <1nm desirable



Wide choice allows new processes – **heavy** for milling, light for imaging, reactive for beam chemistry, specific for doping



Wide choice allows more control – *high* for efficient milling, *low* for reduced sample damage, milling depth control, backscatter analysis



The longer the better – some milling and imaging can be *slow* 

#### The trick: balance tradeoffs, get as much as possible!

# How to keep a small focal spot?

1. Keep aberrations, Coulomb interactions under control

2. Keep source emittance small

 $\mathcal{E} = (\langle x \rangle^2 \langle x' \rangle^2 - \langle x x' \rangle^2)^{1/2} \sqrt{U} \longrightarrow$  Volume in transverse phase space: *conserved!* 

GOOD



### NOTE:

Reducing angular spread also works:

### Advantages:

- Completely equivalent to small source
- Moves virtual source far away
- Demagnification becomes very large
   Less sensitive to vibrations
- Current density is smaller (fewer Coulomb interactions)

### Not many ways to do this with ions!

## Magneto-Optical Trap Ion Source



• Ionize with another laser and extract with a uniform electric field

Ultracold temperature of MOT

- $\rightarrow$  Small transverse velocities
- $\rightarrow$  Low divergence
- $\rightarrow$  Emittance =  $\sigma (kT/2)^{1/2}$

### • Choice of 22+ ions



- Low energy spread
  - Inherent spread ~neV
  - $^{\rm o}$  Practical spread: geometry-dependent,  $\propto$  E

Long term stability

No finicky tip
Macroscopic quantities of ion beam material

# **MOTIS Source Geometry**



- "W" trapping beam configuration
- Another retroreflected beam  $\perp$  page
- Top window with ITO conductive coating
- Trapped atoms are ionized and extracted through hole in bottom mirror



## **Realization: Lithium MOTIS**

#### Why lithium?

- Light ion, low sputtering, good for microscopy
- Interaction with sample should be very different from gallium or helium
- Compact, convenient lasers for cooling



Laser cooling @ 671 nm Ionization @ 350 nm

### How much useful current?



- Axial mode high current
- Up to 60 pA observed
- Insert 20 µm aperture in beam
- Measure fraction of current that gets through vs *I*<sub>tot</sub> and *V*



- Current fraction depends on:
   ➢ Extraction field
   ➢ Total summert
  - ➤ Total current
- Can eliminate effects with more E field

#### → MOTIS is a well-characterized, calculable source

# Li ion microscope



# Lithium ion microscope

- Mount MOTIS on commercial FIB column, supplied through collaboration with FEI Co.
- Laser cooling lasers and optics in rack, coupled by fibers
- Ionization laser is doubled Ti:sapphire, coupled by fiber (not shown)
- Beam scanning, image acquisition handled by FIB system





# Lithium MOTIS Images



Sample: broken microchannelplate

# Lithium MOTIS Images

### Comparison between SEM and Li MOTIS Sample: Si with unknown contamination



SEM: 1 kV, 10 nA



Li MOTIS: 2 kV 10 pA

### **Beam measurements**

2 keV, 1 pA beam



Beam width vs MOT temperature



### **Lithium MOTIS Images**

### Best resolution to date: 27 nm at 2 kV





#### Sample: tin balls on carbon

Sample: graphite

## **Applications**

#### Li ion beam lithography

With D. Winston, K. Berggren, MIT

- HSQ on Si
- New species could improve resolution, clarify nuclear vs electronic stopping

#### Li implantation in Si nanowires

With S. Wagesreither, A. Lugstein, TU Wein

• Investigate local diffusion of Li

#### Li implantation in WO<sub>3</sub>

With D. Ruzmetov, A. Talin, CNST

- Modify optical properties on the nanoscale
- Observe Li migration under electric field







# Outlook

#### MOTIS has a "bright" future...

- Construct high voltage Li system
- Bring present source to diffusion limit and beyond?
- Consider other species, e.g. Cs, Er, etc.
- Explore wide range of applications
  - Li implantation
  - Ion lithography
  - Surface modification/damage by Li FIB
  - Secondary yield of Li ion beam from a range of materials
  - Beam chemistry
  - Biological samples
  - Imaging of complex oxides
  - High quality polishing of ion milled surfaces for TEM prep
  - Backscattered ion energy analysis
  - Implantation lithography
  - etc...

#### AND consider options for even brigher sources (see poster)



#### Thanks to...

- J. Orloff, FEI
- M. Maazouz, FEI
- G. Schwind, FEI
- C. Rue, FEI
- D. Winston, MIT
- K. Berggren, MIT
- S. Wagesreither, TU Wein
- A. Lugstein, TU Wein
- Y. Greenzweig, Intel
- S. Tan, Intel
- R. Livengood, Intel
- D. Ruzmetov, CNST
- A. Talin, CNST
- K. Twedt, CNST