

THE UNIVERSITY OF MELBOURNE

Arbitrarily Shaped High-Coherence Electron and Ion Bunches from Laser-Cooled Atoms

Robert Scholten

With thanks to:

Keith Nugent David Sheludko Corey Putkunz Andy McCulloch Daniel Thompson Rory Speirs Dene Murphy Joshua Torrance

Edgar Vredenbregt Jom Luiten **TU/e** Eindhoven, The Netherlands

Australian Government Australian Research Council

Imaging small things: diffractive (lensless) imaging

CDI – Coherent Diffractive Imaging

- Measure diffraction pattern for (non-crystalline) object illuminated by x-rays
- Measure intensity, recover phase algorithmically, to determine image of object
- Need a coherent source

Nugent and coworkers: Abbey et al. Nat Phot 5 (2011); Whitehead et al. PRL 103 (2009)

Electrons?

- Interaction 10⁴ to 10⁶ times stronger than X-rays
- Lower damage for bio-molecules
- Electron optics extremely advanced
- Detectors have good resolution, high efficiency
- Electron microscopy is fantastic, but...

Too slow [†]

- Molecules destroyed before imaged. No dynamics.
 - Space-charge repulsion limits brightness
 - Only one electron at a time in high-res electron microscope
 - Dynamics lost

CDI with electrons?

• Need high brightness, i.e. transverse coherence + high current

So is CDI possible with electrons?

Coherence

So is CDI possible with electrons?

Electron CDI

Atomic resolution ptychographic eCDI

 $L_{c} = 0.15 \,\mathrm{nm}$

Boron nitride helical cones

FEI Titan microscope STEM 300keV λ = 2pm, over-focused For given STEM probe, peCDI \rightarrow resolution improvement

Too slow: coherence not enough

Coherence good, but need lots of electrons

Brightness $B_{\perp} = \frac{I}{4\pi \varepsilon_x \varepsilon_y} = \frac{mc^2 J}{\pi kT}$ (thermal source)

Field emission tips: <u>coherent</u> but not high current

Photoemission:

high current but not coherent

Magic:

high current and high coherence

without space-charge explosion?

Knuffman, Steele, Orloff, McClelland, New J Phys 13 103035 (2011)

Coherence

Short pulses, high electron density \rightarrow Coulomb expansion

... irreversible space-charge explosion

The problem and a solution

Bunch shaping to allow explosion reversal

- Space-charge repulsion does *not* intrinsically reduce brightness
 - at least, not irreversibly
- Uniform density + elliptical bunch shape \Rightarrow can refocus bunch

Bunch shaping

Cold atom electron source allows spatial control

Andy McCulloch et al, Nature Physics **7** p785 (2011)

Arbitrary bunch shaping

Desired

Excitation laser beam profile

Electron density

Propagation distance 24cm Time of flight 14ns

Electron mass is <u>small</u> 10K = <1 meV, v = 17 km/s

Andy McCulloch et al, Nature Physics **7** p785 (2011)

World's most expensive TV!

Update phase mask at 10Hz: dynamically shape electron bunch

Phase mask on SLM

10-shot average Electrons

Single-shot

Longitudinal shaping too

Temperature, coherence, emittance

Temperature and spatial coherence

Electron mass is <u>small</u> 10K = <1meV, v = 17 km/s

• Control excess energy via laser λ

Measuring the electron coherence v1

Quantify

- SLM \rightarrow uniform density pulses
- Measure edge resolution

$$\frac{dQ_e}{dr} \rightarrow \text{coherence } L_c \text{ and } T$$

- Edge gradients related to
 - Accelerator geometry (distances d_1, d_2)
 - Excess photon energy
 - Minimum temperature T_0

 $\left. \left. \frac{dQ_e}{dr} \propto e \frac{d_1}{2d_1 + d_2} \frac{1}{\sqrt{d_1(k_B T_0 + \Delta E)}} \right. \right.$

Measuring the electron coherence v1

Andy McCulloch et al, Nature Physics 7 p785 (2011)

Measuring the electron coherence v₂

$$\mathcal{V}_{pc} = \exp\left[-\frac{2\pi^2 \sigma_b^2}{d^2}\right] = \exp\left[-\frac{1/d^2}{m^2 l_c^2/h^2 t^2}\right]$$

Saliba et al, Optics Express **20** 3967(2012)

Ultrafast

Ultrafast

- Slow photoionisation (5ns) + fast excitation (110fs)
- Detector-limited sub-ns pulses
- Geometry, extraction field: predict 150ps

Rb⁺

• High bandwidth (20nm): is temperature affected?

Multiphoton and two-colour processes

- Excitation
 - Coherent: One fs photon + one 5ns photon (two-colour)
 - REMPI: Multiple fs photons
- Coherent \rightarrow cold
- $REMPI \rightarrow hot$

Unpublished data was here

Ultrafast pepperpots

Emittance

- Virtual pepperpot: holey mask → beamlets
- Divergence of beamlet \rightarrow emittance

Unpublished data was here

Short cold bunches

- Emittance increases, but lower than expected from fs bandwidth
- Excess energy along propagation axis

Main points

1. Electron coherent diffractive imaging

 \rightarrow atomic resolution with field-emission source

- 2. Cold atoms
 - \rightarrow cold electrons, high transverse coherence

3. Unique capability: 3D bunch shaping

 \rightarrow reversal of Coulomb explosion?

4. Ultrafast with high coherence