nano aperture ion source

Leon van Kouwen David Jun Pieter Kruit

HR focused ion beams: applications

fabrication

cross sections

TEM lamella

Zyvex1abs.com

high surface contrast

channeling contrast

SIMS

imaging

FOM **TU**Delft 🛞 FEI

HR focused ion beams: State-of-the-art

Helium ion microscope

LMIS (Galium)

HR focused ion beams: State-of-the-art

Helium ion microscope

Various gas species enable

- no contamination in nano-structures
- efficient sputtering
- imaging with little sputtering
- Ion implantation

TUDelft 🛞 FEI

FOM

nano aperture ion source (NAIS)

electron impact ionization sub-micron gas chamber

- micromachined membranes
- high intensity e-beam (schottky)

any gas possible

 $B_r = \frac{e}{\pi} \frac{\sigma_I}{\sigma_C} \frac{J_e}{kT}$

reduced brightness $B_r = \frac{eJ}{\pi kT}$

lon current density $J = J_e (1 - e^{-\sigma_I n l}) \approx J_e \sigma_I n L$

low ion-neutral interaction

$$L = \text{ion mean free path} = \frac{1}{n\sigma_c}$$

max [(ionization cross section) x (electron current density)]

• Typical schottky and electron optical column specs:

*V.N. Tondare

FOM

- Bias voltage
 - determines energy spread
 - prevents ion-ion interactions

- Bias voltage
 - determines energy spread
 - prevents ion-ion interactions

typically only one ion in the source at a time!

electron current: 14nA membrane spacing: 2.3um aperture diameter:1.5 um

energy spread measurements

_

$$B_r = \frac{e}{4\pi} \frac{\sigma_I}{\sigma_C} \frac{J_e}{kT}$$

Cooling down the gas chamber:

- Brightness improved
- Energy spread unaffected (kT << eV_b)

Cooling with liquid helium or nitrogen: same device

Cooling by LASERs: alternative design

Conclusions

- Source for HR FIB systems: the Nano aperture ion source
- First tests inspiring

Outlook

- Replace Ga on a FEI DualBeam
- Measure brightness
- Explore applications
- Optimize by improved physical model
- Cool down ?

TUDelft 🛞 FEI

FOM

